Thomas von Larcher, Freie Universität Berlin

"What is... Scale similarity and self organisation in turbulent flows?"

Self organisation in turbulent flows leads to the emergence of coherent vortices at different scales. Such coherent structures have been highlighted by flow visualisation methods, for example by defining vortices as areas where the vorticity magnitude is greater than the rate of strain (so-called Q-criterion). To enable self-similar extrapolation of structures to small, unresolved scales, quantitative description of self-similar structures needs to be achieved. One challenging aspect is that the geometry of coherent structures can be variable; with increasing vorticity level, one typically sees an evolution from ribbon-like structures to elongated tubes. In order to be used in this context, pattern recognition techniques need to be able to detect structures despite being stretched or rotated. Furthermore, intense small-scale structures are not randomly distributed in space and time but rather form clusters of inertial-range extent, leading to an intermittent flow organization. With increasing Reynolds number, the intermittency becomes more pronounced and fluctuations in velocity gradients become more extreme, with longer tails in their probability distribution. Non-local scale interactions appear to also impact intermittency, to an extent that scales with the Reynolds number. Studying the organization in turbulent flows using data-driven methodologies will be part of project B07.